

Human limitations as safety factor considerations in Femtosecond Laser beam alignments

Arie Amitzi

Femto Laser

Femtosecond Ti:Sapphire Laser - basic parameters

- ➤ Ti:sapphire laser is usually pumped with another laser with a wavelength of 514 to 532 nm and operate at 800 nm central wavelength and have about 20 nm FWHM or more
- ➤ High peak power. Because of its extremely short pulse duration the peak power could be extremely high

$$P_{peak\to\infty} = \frac{E}{\Delta t \to 0}$$

Femtosecond Ti:Sapphire Laser Accidents

- >Typical 800 nm wavelength is visible at high powers
- > Tens known accidents
- Many accidents ended with irreversible foveal damage. Sometimes in both eyes.

Common causes for eye injuries occurring during beam alignment

- Frequent incorrect eyewear selection and/or eyewear failure is one of the primary common causes for eye accidents
- ➤ Conflict between **safety** and **performance** criteria cause failure to use available eye protection due to inability to view adequately the beam path and location
- Eye exposure due to unanticipated reflection during laser alignment

Eye hazards from ultrashort lasers are different than those caused by other lasers

- ➤ Ultrashort laser high pulse power density may cause saturation of the eyewear absorption ability, and thus reduce the optical density of the eyewear
- ➤ Ultrashort laser pulses have a large bandwidth and a broadband filter is required

- Threshold energy for eye injures is much lower than in longer pulsed lasers
- Injury can also result from exposure to a diffuse or stray light reflection

- ➤ Diffuse reflection can cause **bilateral** foveal damage
- Focused ultrashort laser by the optical kerr lens effect

$$N = N_0 + N_2 I$$

 $N_0 >> N_2$
High Irradianc

Root causes of accidents

➤ Each IR card has a typical IR absorption and visible emission band

➤ Each laser safety eyewear has a typical transmission depending on the wavelength

NIR Absorption

Visible light

Incorrect selection of laser protection eyewear (LPE) spectral attenuation and the infrared viewer create lack of contrast and low VLT

- ➤ Some IR cards are saturated and cause a "blooming" effect
- Most IR cards have diffuse reflections
- ➤ Plastic coating of some IR cards have partial specular component reflection

Root causes of laser safety eyewear removal

- ➤ When the IR card is saturated causing a "blooming" effect and a large fuzzy spot disturbs the beam alignment procedure
- Low Visible Light Transmission (VLT) affects the contrast sensitivity and prevents from viewing the beam location precisely enough to get centered on the optics element
- ➤ Underestimation of the risks involved due to poor training

Lower light — Lower resolution

Before ultrashort laser alignment starts, the lab Pl/laser supervisor must check the following:

- The researcher received a proper laser safety training
- The laser safety eyewear is comfortable for the user and has the required ultrashort lasers level of protection with a proper attenuation
- The laser safety eyewear VLT, the Invisible laser alignment detector and lighting conditions together should enable to see all the optical elements accurately enough for the beam alignments

Thank You

Questions?